
Using PeeringDB to set up your
Internet Exchange peering

www.noction.com

Page 1 of 7

When networks exchange traffic without having a customer-
provider relationship, this is called peering. There’s private
and public peering. Private peering happens over a direct in-
terconnect between the two networks involved.

Public peering happens over an internet exchange (IX). An IX
is nothing more than a shared subnet that all the members/
customers connect to. So, each connected network connects
one or more routers to the shared Ethernet network. Peering
then happens by setting up BGP sessions to routers belong-
ing to other networks that are also connected to the IX.

Once you start looking at connecting to one or more IXes,
you’ll soon find that the larger ones have many members. For-
tunately, most IXes have route servers. When you peer with
the IX’s route server(s), you automatically peer with all other
members who also peer with the route server(s). So that’s a
good start. But typically, you’ll also want to peer with other net-
works that don’t peer with route servers. This involves sending
out large numbers of emails to potential peering partners as
outlined in the Peering Request Etiquette blog post. Then, if
everything happens according to plan, you’ll get a message
back that the other network also wants to peer with you, and
peering can commence.

Using PeeringDB to set up your Internet Exchange peering

Introduction

Finding peering partners through PeeringDB.com

At that point, you’ll have to configure one or more routers with
the right information to set up a BGP session towards your new
peering partner’s router. It is of course perfectly possible to find
the contact info of prospective peering partners on the website
of the IX or IXes you’re connected to, and then exchange the BGP
session details through email. However, in practice this is a lot
of work because contact info on the IX websites is often incom-
plete, and the BGP session details in email are unstructured, so
there’s a lot of copy/paste involved.

A better way to handle this is through PeeringDB.com.

PeeringDB is a website that has information about internet ex-
changes and the networks that connect to those IXes. For each
network, there’s a lot of information that is relevant to prospec-
tive peering partners:	

•	 Mostly inbound traffic (access ISP) or outbound traffic (con-
tent network)
•	 Numbers of IPv4 and IPv6 prefixes announced

http://

Page 2 of 7

	•	 Geographic scope: global, regional or smaller
	•	 (Sometimes) traffic levels
	•	 At which IXes the network is present
	•	 Peering policy: open, selective or restrictive, in the latter
cases often with a description of the policy
	•	 Contact information

And, once you’ve agreed to peer, for each IX there’s the AS
number (yes, some networks use different AS numbers in dif-
ferent locations!) as well as their router’s IPv4 and IPv6 ad-
dresses.

So, if a peering partner has their correct information filled in
on PeeringDB, you can use the website to find all the informa-
tion you need to configure your BGP sessions. Well, except
for your BGP MD5 passwords. You find all this information on
PeeringDB without registering an account, but obviously, it’s a
good idea to sign up and fill in your own information for oth-
ers to find. Then, rather than list the relevant information in
your peering request emails, you can simply list a link to your
PeeringDB information.

However, searching PeeringDB for information and then copy-
ing that information to a router configuration in order to set up
BGP is still inefficient and error-prone. A better way to do this
is to retrieve the desired information directly from PeeringDB
using SQL queries or API calls. Unfortunately, PeeringDB no

longer supports querying the database using SQL, so it’s neces-
sary to interact with the database through the PeeringDB REST
API, which requires more steps to reach the same results.

Setting up a system that queries PeeringDB requires a good amount
of work up front, but once that’s done, creating router configura-
tions becomes much easier. As a service to the community, this
ebook contains some simple PHP scripts to accomplish this.

The PeeringDB database can be queried using a REST API. REST
allows a client to request information from a server over HTTP or
HTTPS. The server then returns the requested information in JSON
format.

Our example script is written in PHP. PHP is mostly a web scripting
language, but it can also be used on the command line. Our script
uses the CURL, the Client URL Library, to perform HTTPS requests.
On Linux/Unix systems installing PHP and the CURL library is usu-
ally quite easy, and on macOS they are installed by default. Please
download the script here, and save it with the extension .php:

Download peerlist.php.txt script

Using PeeringDB to set up your Internet Exchange peering

The API

https://www.noction.com/download/7904/

Page 3 of 7

Once downloaded, you can run the script as follows:

 php peerlist.php 1200

The script will then query PeeringDB to find out at which internet
exchanges AS1200 is present. As AS1200 is the Autonomous Sys-
tem of AMS-IX, AS1200 is present at AMS-IX with two routers, so
the script shows:

(Obviously you’ll want to use your own AS number—you do have
your AS registered with PeeringDB, don’t you?)

The next step is for the script to obtain a list of all networks present
at the internet exchanges found above. These are the potential
peers, and it’s usually a long list. This is the relatively modest out-
put for Phyxia, AS35627:

Using PeeringDB to set up your Internet Exchange peering

Exchange Mbps RS IPv4 address IPv6 address
AMS-IX 1000 80.249.208.1 2001:7f8:1::a500:1200:1
AMS-IX 1000 80.249.209.1 2001:7f8:1::a500:1200:2

Total available bandwidth: 2 Gbps at 2 internet exchange
locations.

php peerlist.php 35627

AS35627 has a presence at:

Exchange			 Mbps RS		 IPv4 address				 IPv6 address
FreeBIX			 1000				 195.85.203.23			 2001:7f8:1b::3:5627:1
GN-IX					 100					 193.111.172.30			 2001:7f8:31:0:5:3:5627:1

Total available bandwidth: 1.1 Gbps at 2 internet exchange
locations.

Potential peers:

FreeBIX, Packet Clearing House, 3856, Open
FreeBIX, Trance Nation, 34806, Open
FreeBIX, Connexeon, 35821, Open
FreeBIX, MAC Telecom, 50857, Open
FreeBIX, Netlog N.V., 41471, Open
FreeBIX, FR-NIC-DNS (AFNIC / NIC-France), 2484, Open
FreeBIX, HousingCenter, 28707, Open
FreeBIX, Hermes Telecom Group, 6824, Selective
GN-IX, De Kooi, 16318, Open
GN-IX, OpenPeering, 20562, Open
GN-IX, MetaMicro Automatisering BV, 41037, Open
GN-IX, Duocast BV, 31477, Open
GN-IX, CJ2 Hosting, 39704, Open
GN-IX, Plusine ICT, 198508, Open
GN-IX, gnTel, 41153, Open

Page 4 of 7

Using PeeringDB to set up your Internet Exchange peering

The RS field indicates whether a network is connected to the
route servers of the internet exchange, with 1 meaning yes and
empty or 0 meaning no.

The script can also be run with the additional keyword csv, and
then it will output a comma separated values file which can
easily be imported into a database or spreadsheet. The out-
put then looks like this:

Once you’ve found a network willing to peer, you have to config-
ure your routers. Doing this manually takes time and easily leads
to mistakes. So here is a script to generate router configurations
to generate peering configurations.

However, our script only generates the configuration lines that
are required to set up a peering. Before that can happen, a lot
of configuration needs to be in place already. This is the base
configuration in our example:

This script should provide a simple example of how to interact
with the PeeringDB API and it can provide a start for managing
peering relationships.

php peerlist.php 35627 csv

ix,name,website,asn,info_traffic,info_ratio,info_scope,policy_
url,policy_general,peeringdb_url

“FreeBIX”,”Packet Clearing House”,”http://www.pch.
net/”,3856,”1-5Gbps”,”Balanced”,”Global”,””,”Open”,”https://
www.peeringdb.com/net/286”

“FreeBIX”,”Trance Nation”,”http://www.trancenation.
be”,34806,”0-20 Mbps”,”Balanced”,”Europe”,”http://www.
trancenation.be/?page=PeeringPolicy”,”Open”,”https://www.
peeringdb.com/net/905”

!
router bgp 65065
 neighbor gnix-peers-ipv4 peer-group
 neighbor gnix-peers-ipv4 description IPv4 peers on GN-IX
 neighbor gnix-peers-ipv6 peer-group
 neighbor gnix-peers-ipv6 description IPv6 peers on GN-IX
!
 address-family ipv4 unicast
 neighbor gnix-peers-ipv4 activate
 neighbor gnix-peers-ipv4 maximum-prefix 100000
 neighbor gnix-peers-ipv4 prefix-list import in
 neighbor gnix-peers-ipv4 prefix-list export out
 neighbor gnix-peers-ipv4 route-map localpref110 in
 no neighbor gnix-peers-ipv6 activate
 exit-address-family
!
 address-family ipv6
 no neighbor gnix-peers-ipv4 activate
 neighbor gnix-peers-ipv6 activate

Generating router configurations: base configuration

Page 5 of 7

Using PeeringDB to set up your Internet Exchange peering

 neighbor gnix-peers-ipv6 maximum-prefix 10000
 neighbor gnix-peers-ipv6 prefix-list import in
 neighbor gnix-peers-ipv6 prefix-list export out
 neighbor gnix-peers-ipv6 route-map localpref110 in
 exit-address-family
!
route-map localpref110 permit 10
 set local-preference 110
!

<?
$rtr_name[0] = “freebix-rtr”;
$rtr_ixid[0] = 58;
$rtr_v4[0] = 1;
$rtr_v6[0] = 1;
$rtr_type[0] = “cisco”;
#
$rtr_name[1] = “gnix-rtr”;
$rtr_ixid[1] = 76;
$rtr_v4[1] = 1;
$rtr_v6[1] = 1;
$rtr_type[1] = “cisco”;

What we do here is define two peer groups for peers on the
GNIX exchange: one for IPv4 and one for IPv6. The peergroup
name must match the name of the internet exchange in Peer-
ingDB, but converted to lower case and with non-alphanumeric
characters removed and followed with -peers- and then the IP
version. So GN-IX becomes gnix-peers-ipv4 and gnix-peers-
ipv6.

As is usual with eBGP, the IPv4 sessions are only activated for
IPv4 and the IPv6 sessions only for IPv6. Note that there are no
issues using the same name for the IPv4 and IPv6 prefix lists,
as those are define with ip prefix-list import … and ipv6 pref-
list import … respectively. Both peer groups refer to the same
route map localpref110 that is used to increase the local pref-
erence for peers to 110, so peering routes are preferred over
routes learned from transit providers, which presumably have
the default local preference of 100.

With the base configuration in place, we’re almost ready to start
generating peering configurations. This works by combining the
details for our own AS with the details of another AS. We don’t
request our own information from PeeringDB each time we gen-
erate a peering configuration, both because the PeeringDB API
isn’t very fast and also so we can customize our own information.
Rather, we set up a configuration file, which looks like this:

Generating router configurations: the config file

NOTE: When you take a look at the configuration, it
may look different, as IPv4-specific configuration is of-
ten placed directly under router bgp … rather than un-
der the address-family ipv4 unicast heading.

Page 6 of 7

Using PeeringDB to set up your Internet Exchange peering

This file needs to exist under the name config.txt in the directo-
ry from where we run our script. The rtr_name line is the name for
the router. In this case, there are two routers connected to two inter-
net exchanges. However, if one router connects to both exchang-
es, simply change the name so it’s the same for both exchanges.

In order to save on typing, you can use the generateconfig.php script.
Provide your own AS number as an argument and the script will gen-
erate the configuration information from PeeringDB. For instance:

 php generateconfig.php 35627

And to create the config file:

 php generateconfig.php 35627 >config.txt

A previous config.txt file is overwritten. Find the generateconfig.
php script as well as the routerconfig.php script here:

Download the generateconfig.php script
Download the routerconfig.php script

With the configuration in place, it’s time to run the routerconfig.
php script. This script takes as its input a router name, the AS
number of a peer and optionally an MD5 password:

If we now run the script with the configuration file above in place
and provide the AS number of a peer, this is the result:

#
$num_rtrs = 2;
$ixes = “:freebix:gnix:”;
$local_as = 65065;

php routerconfig.php
Usage: php routerconfig.php <router> <ASN> [MD5 password]

php routerconfig.php gnix-rtr 39704 5ecret

conf t
!
! configuration for gnix-rtr on 2017-01-29 for peer AS39704
!
router bgp 65065
!
 neighbor 193.111.172.79 remote-as 39704
 neighbor 193.111.172.79 password 5ecret
 neighbor 193.111.172.79 peer-group gnix-peers-ipv4
!
 neighbor 2001:7f8:31:0:3:3:9704:1 remote-as 39704
 neighbor 2001:7f8:31:0:3:3:9704:1 password 5ecret
 address-family ipv6 unicast
 neighbor 2001:7f8:31:0:3:3:9704:1 peer-group gnix-peers-ipv6
 exit-address-family
!
end

Generating router the actual configuration snippets

https://www.noction.com/download/8233/
https://www.noction.com/download/8234/

Page 7 of 7

Using PeeringDB to set up your Internet Exchange peering

The script finds all the internet exchanges that we and our peer
have in common, and then generates peering configurations for
the ones where the indicated router is present. (So it’s necessary to
run the script for each router separately.)

The script outputs configuration lines that configure the desired
peerings based on the IP addresses listed in PeeringDB, which you
can copy and paste into the router configuration. It’s a good idea
to double check the output, sometimes there’s outdated or incor-
rect IP addresses in PeeringDB.

The peer group reference is address family specific, hence we need
to specify address-family ipv6 unicast first before we can set the
IPv6 peer group.

It shouldn’t be too hard to modify the script to generate
configurations for different types of routers. Have a look at the
function genconfig_cisco that starts at line 127. This function is
called from the function genconfig that starts at line 110, where
you can add extra lines to refer to additional router types. Note
that genconfig_cisco is called for “router types” cisco, quagga
and brocade. For our purposes, Cisco and Quagga configurations
are identical and Brocade only has a slightly different router bgp
command syntax.

So have a look at these scripts and start configuring internet ex-
change peerings faster than ever.

Copyright ©2021 Noction Inc., All Rights Reserved.

This ebook was brought to you by Noction.

Noction Intelligent Routing Platform enables enterprises and service providers
to maximize end-to-end network performance and safely reduce infrastructure

costs. The platform evaluates critical network performance metrics in real-time and
responds quickly by automatically rerouting traffic through a better path to avoid

outages and congestion.

Request a free trial today and see how IRP can boost your network performance.

Start a Free Trial

http://www.noction.com/?utm_source=Knowledge%20Base%20PDF%20(Home)&utm_medium=pdf&utm_campaign=Knowledge%20Base%20PDF%20(Home)
http://www.noction.com/trial?utm_source=Knowledge%20Base%20PDF%20(Trial)&utm_medium=pdf&utm_campaign=Knowledge%20Base%20PDF%20(Trial)

